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ABSTRACT

In this paper, we present a new numerical formulation of solving the Boundary

Integral Equations reformulated from the Helmholtz equation. The boundaries of the

problems are assumed to be smooth closed contours. The solution on the boundary is

treated as a periodic function, which is in turn approximated by a truncated Fourier

series. A Fourier collocation method is followed in which the boundary integral equation

is transformed into a system of algebraic equations. It is shown that in order to achieve

spectral accuracy for the numerical formulation, the non-smoothness of the integral

kernels, associated with the Helmholtz equation, must be carefully removed. The

emphasis of the paper is on investigating the essential elements of removing the non-

smoothness of the integral kernels in the spectral implementation. The present method

is robust for a general boundary contour. Aspects of efficient implementation of the

method using FFT are also discussed. A numerical example of wave scattering is given

in which the exponential accuracy of the present numerical method is demonstrated.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at tile Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research (:enter, Hampton, VA 23681.





1. INTRODUCTION

The Boundary Integral Equation Method is a powerful tool for solving certain

boundary value problems. It is particularly attractive in developing numerical methods

since, when applied, it reduces the dimension of the problem and often transforms a

problem in an infinite domain to integrals on the finite boundary in which the far field

radiation condition is satisfied automatically.

Numerical methods for the Boundary Integral Equations have been developed

predominantly based on the Boundary Element Method (BEM). In this method the

physical boundary is divided into finite elements and integrations over each element are

approximated by numerical quadratures. In this way, the integral equation is converted

into a system of algebraic equations. BEM has gone through a rapid advancement in

recent years. Its applications to the Helmholtz equation are discussed in reference [2]

and the references cited therein. Other formulations of solving the Boundary Integral

Equations in wave scattering and propagation have also been proposed in the past,

including, for example, the T-matrix Method[3,4,5].

In this paper, we present a spectral method formulation for solving the boundary

integral equations reformulated from the Helmholtz equation. For the Fourier approx-

imations used in this paper, we assume that the boundary of the problem is a smooth

closed contour. The functions appearing in the 2-D boundary integral equation will

be treated as periodic functions, which are in turn approximated with high accuracy

using truncated Fourier series. The boundary integral equation is then transformed

into a system of linear algebraic equations. The spectral methods have been known to

have extremely fast convergence rates, faster than any finite power of 1/N when the

solution is infinitely smooth[6,7] (where N is the number of collocation points). The

present numerical formulation will be seen to have spectral accuracy.

It is known that, although any periodic function can be approximated by a trun-

cated Fourier series, the rate of convergence depends on its smoothness. Unfortunately,

the integral kernels for the Helmholtz equation are not smooth. In particular, we note
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that the 2-D Green's function, appearing in the integral equations, possesses a loga-

rithmic singularity. Furthermore, the normal derivative of the Green's function also

contains a term involving the logarithmic function. It will be seen that it is critical to

remove the non-smoothness of the integral kernel in order to achieve fast convergence

in the spectral formulation. In this paper the non-smoothness of the integral kernels

is subtracted out by using a logarithmic periodic function whose Fourier expansion is

known.

Fourier approximation methods for the boundary integral equations in wave scat-

tering have been proposed in the past for simple geometries. A "fast numerical method"

has been formulated by Bojarski[8] for wave scattering by a circular cylinder. It was

pointed out that the boundary integral equation for scattering by a hard circular cylin-

der can be solved easily and efficiently in the Fourier spectrum domain of the solution.

Due to the special geometry considered, a simple relation for the Fourier coefficients

of the solution and those of the boundary condition was derived. Recently a similar

numerical alSproach has been applied by Schuster[9] for a wave transmission problem

of concentric cylinders. However, in these works the singularities and non-smoothness

of the integral kernels were not removed. Consequently the convergence rates of these

methods were not exponential.

In section 2, a formulation of the Boundary Integral Equation for the Helmholtz

equation is given, followed by a discretization using a Fourier collocation method.

Essential elements of achieving spectral accuracy are investigated. In section 3, a

numerical example is given in which the spectral rate of convergence is demonstrated.

Section 4 contains the conclusions.

2. FORMULATIONS

_.1. Boundary Integral Equa_ion_

Consider wave propagation in an interior or exterior domain with a smooth closed

boundary F, Figure 1. The wave equation for a scalar function ¢ with assumed time
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dependency of e -i_t is reduced to the Helmholtz equation

V2¢ + _2¢ = 0

_2

where _ is the wave number and V 2 is the 2-D Laplace operator, V 2 - + --
cgx2

The boundary condition considered in this paper is one of the following types :

(1)

02

ay2"

Dirichlet : ¢(_ = a(_ On F

0¢ (_ = b(_ On r
Neumann : Onn

0¢ (_ = c(_ On r
Robin(Impedance): a ¢(_ +/_ _nn

The Helmholtz equation (1) can be reformulated into a Boundary Integral Equa-

tion in various ways[10,11]. Our purpose in this paper is to demonstrate the numerical

method using spectral approximations and the essential elements of achieving spec-

tral accuracy of the numerical solution. A direct formulation of the Boundary Integral

Equation employing the Green's Function will be used here which leads to an integral

equation involving ¢ and its normal derivative on the boundary[2]:

_¢(_)+ Cb-_dr= a_dr (2)

0
where _nn denotes the normal derivative, with the direction of _ being outward from the

domain of wave propagation, and f'_ denotes any point on the boundary. The Green's

function G(_', f"), whose form will be given later, satisfies the following equation

V2G+n2G=-8(f'-_ '') (3)

0_
Once the values of ¢ and _nn on the boundary are found, the solution at any point,

_', inside the domain of wave propagation can be obtained as [2]

¢(_)= a _ - ¢ _-_ dr
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Without loss of generality, let us now assume the boundary curve F be parame-

terized as

fi'r = _0), 0 < 0 < 27r (4)

where 0 is a non-dimensional parameter for the boundary contour, not necessary the

arclength or some angle. In addition, the curve is supposed to be simple, that is

= _ + \_/ #0

For simplicity, we further assume that F(0) is infinitely differentiable. Then the bound-

ary integral equation (2) can be written as

¢(0') + ¢(0) _n-n(0') dO[ dO = (O)G(O, 0') dO dO (5)

in which the line element dr =

expressed explicitly in (5).

dO dO. For clarity, the dependency on 0 has been

For the 2-D Helmholtz equation, the out-going Green's function and its normal

derivative are[12] :

G(0,¢)= ¼H0")( R) (6)

OG "0 = -4 H_')(tcR) "_ " __(,0') :_ (7)

in whichwehaveusedthe notationsthat _ = _'(0)- _'(0')and R = I_I. HereH_" and

H_ 1) are the first kind Hankel functions of order zero and one, respectively.

_,._. Spectral Approximations

a closed boundary F, ¢(0) and -_-(0) are periodic functions of 0, for 0 < 6 <

trot t

For

0¢
21r. Let ¢ and _ be approximated by truncated Fourier series as :

N/2-I

,"(o)= in'
n=--N/2

(8)
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N/2-1

a¢N _._i.o(o)= Z (9)an
n=-N/2

The particular form of the truncated Fourier series has been taken in (8) and

(9) for the convenience of using discrete Fast Fourier Transform (FFT) programs[7].

Substituting (8) and (9) into (5), the boundary integral equation becomes the following

N/2-1 N/2-1 27r

1 _)nein O, _0 ein°_n(O'

n=-N/2 n=-N/2

d_ N/2-1 _021 r6o6o= e'"°a(o,o')
n=-N/2

(10)

dO
dO

We note that the two integrals in (10) are actually the Fourier coefficients of

a(0,0') _ oa o,o' _
and _-_-£-n( ) dO respectively. Our aim is to evaluate the integrals bydO

the Fast Fourier Transforms with spectral accuracy.

It is clear that both G(O,O') d_" OG(o,o,)ld_"dO and _-n dO are periodic functions of 0

and 0'. They are also infinitely differentiable except at 0 = 0' where R = 0 in (6)

and (7). Although any periodic function can be approximated in a truncated Fourier

series, the rate of convergence depends on the smoothness of the function. From this

consideration, we note that, first, G(O,O') has a logarithmic singularity at R = 0, due

to the Hankel function of order zero in (6). Second, although °_(0, 0') can be shown
On

to be a finite function, it is not infinitely smooth. It is easy to show that the function

R has a discontinuous derivative at 0 = 0'. In particular, for 10 - 0'1 small, we have

d_' 1 d2_ ' (0 0')2 + ...... IR = I_(0)- _(0')1= dO" (0 - 0') -4- -_ dO--ft" -

d_' 1 aa_ "

= 10-0'1 _ + _d-_(0- 0')+ ...... (11)

Consequently any term with an odd power or logarithmic function of R will not be

infinitely smooth and has to be treated in order to achieve spectral accuracy in the

Fourier approximation.



To study the singularity in G(O, 0'), we note that

• ,

G(o,o')= ¼H_o')C,_R)= ¼(Jo(,_R)+iYo(,_R))

in which J0 and Y0 are the zeroth order Bessel functions of the first and second kind,

respectively. Using the asymptotic series for a small argument[13],

Jo(,_R)= I (_R)2 (_R)'
4 + 6_ ....

Y0(tcR) = 21n(_-)Jo(tcR)+2--TJo(tcR)+
(_R) 2

27r

we have, for 10 - 8' I small,

i

a(0,0') = _(J0(_n) + ir0(_R))

Jo(t_R)
27r

+ ( smooth terms )

in which "smooth terms" represents a convergent power series containing only the

even powers of R, and J0 is the regular Bessel function of the zeroth order[13], also a

power series of R 2. To remove the logarithmic singularity but preserve the periodicity,
!

logarithmic singularity at

i

8 = 0_. Its Fourier series can be found exactly[12] :

I 0 - O'In 2 sin(_) = _ _ cos.(0 -0')_ (12)
n

rt--_l

To subtract out the singularity in G(O, 0'), let

4H_I)(tcR)+ _-_ln 2sin( ) Jo(tcR)_(s,0') -

Then the Green's function is found as

G(O,O') = G(O,O') - _--_rln 2sin( ) Jo(tcR) (13)

Using (11), it is easy to show that G(0,0') is periodic but finite for all values of

the arguments. Furthermore both G(0, 0') and Jo(tCR) are now infinitely differentiable
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functions. Thus the Fourier coefficients of G(O, 0') d_"
dO can be computed according

to (13) with spectral accuracy. For the term involving the logarithmic function (12),

convolution sums will be used.

OG

On"

We now study the singularities in the normal derivative of the the Green's function

The asymptotic expression of g_)(tcR) for tcR small has the following form[13]

H_I)(tcR) = Jl(tcR) + iYi(tcR)

2___ _2 )_r_R + 7r In JI(_R) + odd powers of _R

24 2i in (__R)- rr_R + _r JI(_R) + odd powers of _R

in which we have used the fact that the Bessel function of order unity, J1, is a power

series of odd power of t_R,

t_R (tcR) 3

J,(tcR)- 2 16 +""

In addition, it can be shown that/_, g = O((0 - t?')2). Thus it follows that

___(_,_,)- i_;( 2i 2/in (_) )/_.__rtcR + 7r Jl(tcR) + odd powers of tcR

= _ln (_)J_(nR) "_'_2r _ + ( smooth terms )

OG

It is seen that, although Onn is a finite function, it does not have smooth derivatives due

to the logarithmic function appeared in the first term shown above. For this reason,

its Fourier approximation will converge only at a finite rate of 1/N 3. To smooth out

the function for computations by FFT, let

it¢ H_I)(_R) ___ t¢In/t(0, 8') = 4 27r 2sin(_-0')]_ Jl(tcR) _ _

Then

0G(8'0')=/_r(0'8')+2-_ln0n 2sin(_ "_) Jl(t_R)/_Rff (14)
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The functions H(0,0') and Jx(nR)_ -_ in (14) are now periodic and infinitely

OG O, O' d_
differentiable. The Fourier coefficients of _nn( ) dO will be computed according to

(14).

Following the above analysis, we then express the boundary integral equation (10)

as follows :

N/2-1 N/2-1 2_r

n=-N/2 n=-N/2

dO

+ V. In J0-0' ge
de

N/2-1 2,_ d_' 1 2'_ ei,0 in 2sin(0 -_ 0')= _ _. _'"°_(0,0') 60-
n=-N/2

(15)

Now all the integrals in (15) are in a form which can be evaluated numerically

with spectral accuracy.

_.3. Discretization

In what follows, a spectral collocation approach will be taken in deriving the

algebraic system for the boundary integral equation (15). Let us introduce two sets of

discretization points (Figure 1)

Oj = 2rj/N, j = 0, 1,...,N- 1

= 2_r(j' + _)/N, j'0i,' = O, 1, ..., N - 1

The reason for using two sets of discretization points, as will be clear later, is that it

avoids the direct evaluations of 6(0, 0') and/it(0, 0') at points where 0 = 0'. Although

both functions are finite there, their limits are geometry dependent. The current dis-

cretization is robust.
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We then require that the boundary integral equation (15)be satisfiedat collocation

points 0' = 0_,, j' = 0, 1, ..., N - 1.

For convenience of discussion, we denote the following Fourier series approxima-

tions at O_, for j' = 0, 1, ..., N - 1,

dO = (16a)
n=-N/2

' = hi,he -inO (16b)

dO ,-,=-N/2

[ d_ N/2-1[J°(xn)]°; , dO = E Pi'ne-in° (16c)
n=-N[2

dO = E qJ'ne-inO (16d)
8_, n=-g/2

The coefficients of the expansions are calculated by FFT (backward in the usual

sense) as follows:

1 N-1

j=O

1 N-1

j=0

1 N-1

P2,-, = _- Z
j=O

1 N-_

j=O

d_"

ei"°i [Jo(xR)]o;, dd----_(0j)[

e inOj JI(_R Oj)

oj,

(16a')

(16b')

(16c')

(16d')

In addition, we denote (12) as

in 2sin(_--_) = _ ane -in(O-O')
n_ --00

(16e)

where a0 = 0 and an --
1

for n _ 0.
21 1
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It is immediately seen that the two integrals involving G and H in (15) equal to

2_rgj, n and 2_rh.i, n respectively. The other two integrals are obtainable by convolution

sums. Specifically, using the definitions given in (16), we have

'/0'" I- e i"° In 2 sin(u.i'n - 27r

1 fo 2_ ein# In [Vfn - _ 2 sin(

2 ) Jo(, R) dO=dO

dOI

N/2-1

i(n--m)et.,
E pfman-me ' (17a)

m=-N/2

N/2-_

qj ,nan-me _7b)dO = E " i(n--m '

m=-N/2

By substituting (16) and (17) into (15), the resulting algebraic system is :

1 N/2-1 N/2-1
k--"

Cpn e + Z_

n=-N/2 nf -N/2

Cn (2zrhfn + tcufn) =

for j' = 0, 1, 2, ..., N - 1.

Equation (18) is easily cast into a matrix form

N/2-1

-- (lS)
n=-N/2

A4 = Be (19)

where _' and ¢ are the vectors containing Cn and Cn, respectively. For Diriehlet

boundary condition, _ is solved from (19) with _ obtained from the boundary condition

and vice versa for the Neumann boundary conditions. The Robin type impedance

boundary condition can be treated similarly.

I?._ Evaluation of convolution sums

The convolution sums in (17) require O(N) multiplications for each uj, n and Vj'n.

Thus the total operations of obtaining the convolution sums are of order O(N 3). This

cost can be reduced considerably to O(N _ log 2 N) by the use of a pseudospectral trans-

formation method with de-aliasing techniques[6,7]. For completeness, the evaluation

of (17) with a "padding" de-aliasing technique is given below.

Let M > 3N and

_._ = 2_rj/M , j =O, 1,2,...M-1
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Compute the following using FFT for j = 0, 1, 2, ...M - 1 :

Aj,j -

M/2-1

irnO*.l _-/mE;
E ame J c -"

m=-M/2

where

M/2-1

and form the product

PJ' J = E

m=-M/2

/

am -- _ am

I 0

~ I Pj'm
Pj'm --

0

_j, meim_ , e-iraqi

-N<m<N-1

other

-N/2 <_ m < N/2- 1

other

U.i, j = A.i,jPj, j

Then the convolution sum uj, n is the (backward) FFT of Uj, j :

1 M-1

Uj'n = -'M E Uj,j e in_i

j=o

for -N/2 <_ n < N/2 - 1. The convolution sum vj,, can be obtained identically.

3. NUMERICAL EXAMPLE : SCATTERING OF A PLANE WAVE

BY AN ELLIPTIC CYLINDER

The numerical method described in the previous section will now be applied to

the problem of a plane wave scattering by an elliptic cylinder. Exact solutions of wave

scattering by an elliptic cylinder can be easily obtained in infinite series[12]. However,

numerical evaluation of the exact infinite series is not easily obtainable due to the

complexity of the Mathieu functions involved. Our purpose here is to demonstrate

the exponential rate of convergence of the spectral method formulated in the previous
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section. The numerical results will also be compared with some asymptotic values

available in the literature[14].

#.1 Spectral rate of convergence

Let the plane incident wave having an incident angle a about the x axis be

_i = eiX(x cos _+y sin cr)

The scattered wave, ¢, satisfies the Helmholtz equation (1). The boundary conditions

considered here are the Dirichlet (soft) type ¢ = -¢i or the Neumann (hard) type
0¢ 0¢,
On On"

A simple parameterization of the elliptic cylinder is given by

F: (x,y)=(acosO, bsin0), 0<0<2_r (20)

where a and b denote the major and minor axis of the ellipse. The normal vector on F

is _ = -(bcos/9, a sin/9)/v/b 2 cos 2/9 + a 2 sin 2 e.

Numerical results for the Dirichlet boundary condition will be presented first. For

this calculation the parameters have been taken to be a = 2, b = 1 and x = 27r. In

table I, the values of the solution at three selected points on the boundary are given

as the number of collocation points increases. Listed are the values of Onn at 0 = 0 °,

90 ° and 180 ° on the boundary for the incident angle o_ = 0. Since no exact value is

available, the numerical solutions are compared with the results obtained for N = 256.

Clearly exponential rate of convergence is observed.

We point out that although the parameterization of the ellipse given in (20) is

a convenient one, it may not the be the best. For example, the following form of

parameterization, which has more uniformly distributed collocation points than (20),

F: (x,y)=(acos(O+O.O5sin(20)), bsin(O+O.O5sin(20))), 0<0<21r (21)

yields the values shown in Table II. A somewhat better accuracy for small N is observed.
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In Figure 2 the solution, _nn' as a function of 0 on the surface of the elliptic cylinder

has been plotted. Shown are the results for the number of collocation points being 32

and 256.

3._ Far field directivit_,l

Far field scattered intensities, computed as rq_ 2, have also been calculated. The

values on an exterior point are obtained through the boundary integral as

a - dr

N/2-_ _ 2" dF' N/2-_ _2" aG dF'= _ _, e i"'G dO d0- _ _, e'"' On dO dO (22)
n=-N/2 n=-N/2

The Green's function for points lying outside of the boundary does not have any sin-

gularity. Thus (22) is evaluated using FFT directly. The directivities of the scattered

intensity for wave incident angle c_ = 0 °, 30 °, 60 ° and 90 ° are shown in Figure 3. For

this calculation, a = 2, b = 1 and t¢ = 21r.

Barakat[14] gives some asymptotic values of long wave scattering of an elliptic

cylinder at far field for normal incidence. A comparison of the current numerical

results with the asymptotic values is presented in Tables III and IV. For these cases,

a = cosh#0, b = sinh#0 and n = 0.2. Here #0 corresponds to a value in the elliptic

coordinates. The results of the far field scattered intensity for #0 = 1.0, 0.6 and 0.2

are presented in Table III and IV for the Dirichlet and Neumann boundary conditions,

respectively. For the present long wave scattering, N = 64 has been used for all the

calculations. The numerical computation agrees with the asymptotic estimation.

Finally we note that although the exterior scattering problem is uniquely deter-

mined, the direct formulation of the Boundary Integral Equation used here would not

yield a unique solution when the wave number t¢ coincides with the eigenvalues of a

correspondent interior homogeneous problem. On the other hand, this numerical diffi-

culty is well understood and remedies are readily available[10,11]. For example, unique
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solution canbe obtained in a combination of single-and double-layerformulation of the

Boundary Integral Equation[15]. The modifications of the present spectral implemen-

tation to other formulations of the Boundary Integral Equation are straightforward.

4. CONCLUSIONS

In this paper, a spectral method of solving the Boundary Integral Equation is

presented. It is shown that the integral kernels for the Helmholtz equation contain

singular terms that have to be removed to achieve the spectral accuracy. Detailed

numerical implementation of a Fourier collocation formulation has been given. The

non-smoothness of the integration kernels is subtracted out by using a logarithmic

function whose Fourier expansion is known. The numerical formulation presented here

preserves the spectral accuracy and yields an exponential rate of convergence.

Compared to the Boundary Element approaches, the Spectral Boundary Integral

Equation Method presented in this paper would yield matrices of much smaller size

since the latter requires far fewer points to achieve the same accuracy. This, of course,

reduces the complexity and the cost of solving the resultant algebraic system. Since

both methods will result in dense matrices, it appears that the spectral formulation is

more advantageous for problems with smooth geometries.
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Valuesof

N

0¢
TABLE I

for the Dirichlet boundary condition at selected points on the boundary.

The boundary is given by (20).

a = 2, b = 1, ,¢ = 2_', incident angle a = 0 °.

0=0 ° 0 = 90 ° 0 = 180 °

7.13422511932 6.178009567 2.376671291

48 6.379285016 2.175324633 6.914464114 0.2x10 -4

64 6.379334010 2.175259123 6.914387795 0.1xl0 -7

80 6.379333962 2.175259114 6.914387773 10 -9

96 6.379333961 2.175259114 6.914387772 10 -11

256 6.379333961 2.175259114 6.914387772

Relative Error

0.04

Values of

N

0¢
TABLE II

for the Dirichlet boundary condition at selected points on the boundary.

The boundary is given by (21).

a = 2, b = 1, ,¢ = 27r, incident angle a = 0 °.

0=0 ° 0 = 90 °

2.165098187

0 = 180 °

6.89952092732 6.402635098

48 6.379355527 2.175263759 6.914393819 0.3×10 -5

64 6.379334276 2.175259159 6.914387893 0.5x10 -7

80 6.379333966 2.175259114 6.914387774 0.5×10 -9

96 6.379333961 2.175259114 6.914387772 10 -11

256 6.379333961 2.175259114 6.914387772

Relative Error

0.005
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TABLE III

Values of re 2 at far field for the selected angles. Dirichlet type

soft wall boundary conditions are applied.

a = cosh #0, b = sinh #0, n = 0.2 and incident angle a = 90 °.

Far Field Angle

#o = 1.0, 8 = 0 °,180 °

Numerical

1.769057417

Asymptotic[14]

1.774

/_o = 1.0, 8 = 90 ° 2.137413140 2.113

/_o = 1.0,/9 = 270 ° 1.538098511 1.491

/_o = 0.6,/9 = 0 °, 180 ° 1.364415306 1.367

#o --- 0.6, 8 ----90 ° 1.506576730 1.484

#o ----0.6,/9 = 270 ° 1.287260683 1.258

#o = 0.2, 8 = 0 °, 180 ° 1.062775602 1.064

#o = 0.2, 8 = 90 ° 1.107062467 1.087

#o = 0.2,/9 = 270 ° 1.062022484 1.041
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TABLE IV

Values of re 2 at far field for the selected angles. Neumann type

hard wall boundary conditions are applied.

a = cosh#0, b = sinh/_0, _ = 0.2 and incident angle a = 90 °.

Far Field Angle

/z0 = 1.0, 0 = 0 °, 180 °

Numerical

0.009175011010

Asymptotic[14]

0.00884

#o=1.0, 0=90 ° 0.02258893859 0.0216

_o = 1.0, 0 = 270 ° 0.1110188572 0.1113

_o = 0.6, 0 = 0°,180 ° 0.001676516587 0.00165

#o = 0.6, 0=90 ° 0.007209616977 0.0071

_o = 0.6, 0 = 270 ° 0.02745548914 0.0273

#o = 0.2, 0 = 0°,180 ° 0.0001288604229 0.00013

#o = 0.2, 0 = 90 ° 0.003710427872 0.0037

#o = 0.2, 0 = 270 ° 0.006989684179 0.0069

18



0 2

el

eo

nl

/ i / /

I " I "" I w I " I I I I " I w I

eo e I e 2 eN. I

09 _2_

Figure 1. Schematic of discretization of the boundary. 0 is the parameterizing variable

for the boundary contour. _, and ffi indicate the direction of the normal vector for an

exterior and interior problem respectively.
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Figure 2. Solution _nn on the surface of the ellipse for the Dirichlet boundary condition.

a = 2, b = 1 and _ = 2_. Plane wave incident angle a = 0% The parameterization of

the ellipse is that of (21).
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Figure 3. Far field directivities of the scattered wave for indicated incident angles.

a = 2, b = 1 and t¢ = 2_r, with Dirichlet boundary condition.
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